๐Ÿ”ง Detailed Design Calculations: Plastic to Fuel Pyrolysis Plant (10 TPD)

 

Detailed Design Calculations: Plastic to Fuel Pyrolysis Plant (10 TPD)

1. Input Data and Assumptions

Parameter

Value

Unit

Plant capacity

10,000

kg/day

Operation time

20

hours/day

Bulk density of plastic flakes

0.25

kg/L

Plastic to oil yield (avg.)

70

%

Heating value of feedstock

35

MJ/kg

Specific heat of plastic

2.0

kJ/kgยทK

Target pyrolysis temp.

450

ยฐC

Ambient temp.

30

ยฐC


2. Material Balance

Daily Feedstock:

  • 10,000 kg plastic/day

Estimated Product Yields:

  • Oil: 70% โ†’ 7,000 kg/day

  • Gas: 20% โ†’ 2,000 kg/day

  • Char: 10% โ†’ 1,000 kg/day


3. Energy Requirement for Pyrolysis

Heating Load (Q):

Q=mโ‹…cโ‹…ฮ”TQ = m \cdot c \cdot \Delta T
  • m=10,000m = 10,000 kg/day

  • c=2.0c = 2.0 kJ/kgยทK

  • ฮ”T=450โˆ’30=420\Delta T = 450 - 30 = 420 ยฐC

Q=10,000โ‹…2.0โ‹…420=8,400,000 kJ/dayQ = 10,000 \cdot 2.0 \cdot 420 = 8,400,000 \text{ kJ/day}

Convert to kWh:

8,400,000รท3600=2,333 kWh/day8,400,000 \div 3600 = 2,333 \text{ kWh/day}

Add heat losses (assume 25%):

Qtotal=2,333โ‹…1.25=2,916 kWh/dayQ_{\text{total}} = 2,333 \cdot 1.25 = 2,916 \text{ kWh/day}

4. Reactor Sizing

Assume 4 hours residence time and 250 kg/h feeding rate

Volume=MassDensity=1,000250=4.0 m3\text{Volume} = \frac{\text{Mass}}{\text{Density}} = \frac{1,000}{250} = 4.0 \text{ m}^3

Assuming horizontal cylindrical reactor:

Volume=ฯ€โ‹…D24โ‹…L\text{Volume} = \pi \cdot \frac{D^2}{4} \cdot L

Assume L = 4 m:

4=ฯ€โ‹…D24โ‹…4โ‡’D=1.13 m4 = \pi \cdot \frac{D^2}{4} \cdot 4 \Rightarrow D = 1.13 \text{ m}

=> Reactor Size: 4 m length x 1.13 m diameter


5. Condenser Sizing

Condense 7,000 kg/day of vapor to liquid

  • Vapor flow rate: 350 kg/h

  • Latent heat of condensation: 300 kJ/kg

  • Cooling water ฮ”T: 10ยฐC

Q=mโ‹…L=350โ‹…300=105,000 kJ/hQ = m \cdot L = 350 \cdot 300 = 105,000 \text{ kJ/h}

Cooling water flow rate:

Q=mโ‹…cโ‹…ฮ”Tโ‡’m=105,0004.18โ‹…10=2,510 kg/hโ‰ˆ2.5 m3/hQ = m \cdot c \cdot \Delta T \Rightarrow m = \frac{105,000}{4.18 \cdot 10} = 2,510 \text{ kg/h} \approx 2.5 \text{ m}^3/h

6. Gas Scrubber and Flare Sizing

Combustible Gas: 2,000 kg/day (~100 kg/h)

Assume methane equivalent:

Energy value=50MJ/kgโ‡’5,000MJ/day=1,389kWh/day\text{Energy value} = 50 MJ/kg \Rightarrow 5,000 MJ/day = 1,389 kWh/day

Flare size estimation:

Assume 10 kg/h continuous flaring

Use flame diameter โ‰ˆ 0.3โ€“0.5 m with vertical pipe height โ‰ˆ 3 m


7. Fuel Oil Storage

Yield = 7,000 kg/day, assume density = 0.85 kg/L

Volume=70000.85=8,235 L/day\text{Volume} = \frac{7000}{0.85} = 8,235 \text{ L/day}

For 3 days buffer:
Storage Tank = 25,000 L (use 30,000 L for contingency)


8. Char and Ash Handling

Char output = 1,000 kg/day
Assume stored in 1-ton jumbo bags or silos

Silo size (1.2 bulk density):

Volume=1,0001.2=0.83 m3/day\text{Volume} = \frac{1,000}{1.2} = 0.83 \text{ m}^3/day

Use 3โ€“5 mยณ silo for buffer capacity.


9. Electrical Power Consumption (Estimation)

Equipment

Power (kW)

Duration (hr)

Energy (kWh)

Reactor Heater

100

20

2,000

Condenser Pumps

5

20

100

Feed System

2

20

40

Scrubber/Fan

3

20

60

Automation + Lighting

5

24

120

Total Daily

2,320 kWh


โœ… Summary Table

Item

Design Value

Reactor Volume

4 mยณ

Reactor Dimensions

ร˜1.13 m ร— 4 m

Energy Required

2,916 kWh/day

Condenser Water Flow

2.5 mยณ/h

Daily Oil Output

7,000 kg

Storage Tank Size

30 mยณ

Total Electric Consumption

~2,320 kWh/day


๐Ÿ“Œ If you are interested in seeing articles in other science & engineering, you can find them ๐Ÿ‘‰ here